
Adaptive Control-Based Clock Synchronization
in Wireless Sensor Networks

Kasım Sinan Yıldırım, Member, IEEE, Ruggero Carli, Member, IEEE, and Luca Schenato, Member, IEEE

Abstract— This paper presents PISync, a novel distributed
synchronization algorithm based upon a Proportional-Integral
(PI) controller for Wireless Sensor Networks (WSNs). PISync
synchronizes each sensor node by applying a proportional
feedback (P) and an integral feedback (I) on the relative
synchronization error with respect to the received reference
time which allow to simultaneously compensate both clock offset
and frequency differences. We highlight the benefits of this
approach in terms of improved steady state error and scalability
as compared to least-squares based time synchronization, and
we also propose an on-line adaptive strategy for the design
of the integrator gain to further improve performance. We
present practical flooding-based and fully-distributed protocol
implementations of the PISync algorithm and show through
real-world experiments that it has considerably better perfor-
mance over FTSP, the de-facto time synchronization protocol
in WSNs, in terms of both rate of convergence and steady-
state error with the additional advantage of minimal resource
requirement.

I. INTRODUCTION

Wireless sensor networks (WSNs) perceive and manipulate
physical world by means of their sensors and actuators, and
interact with each other by means of wireless communica-
tion. Their clock systems are implemented using low-cost
crystal oscillators that are intended to operate at specific
nominal frequencies. Counter registers of these clock systems
are clocked with these oscillators and they are increased
with each pulse event, so called the tick of the clock. Clock
drift occurs when the clock signal produced by the oscillator
deviates from its intended nominal frequency which is a
phenomenon occurring quite frequently mainly due to tem-
perature changes. Hence, built-in clocks of the sensor nodes
are not sufficient alone to provide synchronized time notion
which is a fundamental requirement for collaboration and
coordination of the sensor nodes [1]. Time synchronization
is the process that establishes a common time notion among
the sensor nodes in a WSN. This process should be adaptive
since it requires coping with several environmental dynamics
such as frequent temperature and topological changes, packet
losses and quantization errors. Moreover, power, memory
and computation constraints of the sensor nodes make time
synchronization extremely challenging.

A network-wide time synchronization approach, which
is quite simple and robust to dynamic topological changes

This work is supported by the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement n. 257462 HY-
CON2 Network of excellence.

Kasım Sinan Yıldırım is with the Department of Computer Engineering,
Ege University, 35100, İzmir, TURKEY (sinan.yildirim@ege.edu.tr).

Ruggero Carli and Luca Schenato are with the Department of Information
Engineering.

in WSNs, is to disseminate the stable time information of
one or more reference nodes through the network. This
approach, referred as flooding-based time synchronization,
allows each receiver node to calculate its relative offset
and frequency differences with respect to the received time
information, and to estimate the reference time. There are
several successful implementations of flooding-based time
synchronization that employs least-squares regression, as
presented in [2], [3], [4], [5], [6], [7]. However, in least
squares, the relative clock drifts and offsets among two
or more nodes are estimated separately, thus giving rise
to time-synchronization algorithms which are non-linear in
the measurement noise. As a consequence, the effect of
various error sources appears in the time synchronization
error dynamics as multiplicative noise which makes the
global time synchronization error to approximately grow
exponentially with the diameter of the network, thus with
poor performance scaling properties. Besides, least-squares
has high overhead in terms of computation and memory
since they require to store numerous measurements for each
neighbouring node [8].

As an alternative to the method of least-squares, the
method of maximum likelihood estimation [9], [10], belief
propagation [11], and convex closure [12] have also been
proposed. Nevertheless, these methods also have consider-
able computational and memory overheads and it is not
clear whether they can be practically implemented in real
WSNs since only simulative results are presented. Recently,
a different approach based on control theory has been inde-
pendently proposed in [13] and [14] where synchronization
is achieved by using linear feedback on the measured local
synchronization error. The major advantage of this approach
is that the error sources appear as additive noise so that the
global time synchronization error approximately grows as the
square root of the network diameter.

A. Contributions

In this paper, inspired by [14], we consider time syn-
chronization as a control problem and devise a new dis-
tributed synchronization algorithm, named PISync, which
compensates the clock offsets and the differences in clock
speeds based on a Proportional-Integral (PI) controller. In
PISync, nodes achieve time synchronization by applying a
proportional feedback (P) and an integral feedback (I) on
measured relative offsets to compensate their clock offset
and clock speed differences with respect to the received
reference time. We provide a theoretical analysis to highlight
the benefits of PISync in terms of improved steady state

error and scalability as compared to least-squares based
time synchronization. Since PISync is linear, simple and
easy to implement, it is perfectly suitable for WSNs. We
introduce practical flooding-based and peer-to-peer protocol
implementations of the PISync algorithm and an adaptive
strategy for the integral gain in order to balance the trade-
off between the convergence time and the steady state
error in dynamic environments. We present an experimental
comparison of PISync with Flooding Time Synchronization
Protocol (FTSP) [2], the de facto least-squares based time
synchronization protocol in WSNs, on a testbed of 20
MICAz sensor nodes. At the light of our theoretical findings
and experiments, the main advantages of the PISync over
least-squares based time synchronization can be summarized
as follows: (i) it is scalable in terms of steady state global
synchronization error, which grows with the square root of
the network diameter, (ii) it does not store distinct time
information and it allocates only one third of RAM space as
compared to least-squares based time synchronization, (iii) it
is lightweight in terms of CPU usage since it requires more
than an order of magnitude fewer operations as compared to
the least-squares based time synchronization.

II. SYSTEM MODEL

In this section, we propose a hardware clock model, a
logical clock model and a network model which we use
for the presentation and analysis of the synchronization
algorithms in this article.

A. Hardware and Logical Clock Model

Assume each hardware clock has an oscillator capable to
produce an event at time t(k), k ∈ N and let s(t) be the
counter of these events, namely, s(t) =

∑∞
k=0 1(t − t(k))

where 1 is the unit step function. In this way the counter
output is the step shaped function shown in Figure 1. Notice
that the function

f(t) :=
1

t(k + 1)− t(k)
∀t ∈ [t(k), t(k + 1)[, (1)

can be interpreted as the oscillator frequency at time t and
that s(t) '

∫ t
−∞ f(σ)dσ. Typically a nominal value f̂ of

f(t) is known together with a lower bound fmin and an
upper bound fmax such that f(t) ∈ [fmin, fmax] = [f̂ −
∆fmax, f̂ + ∆fmax] where ∆fmax = fmax−fmin

2 . From the
counter s(t), one can build a time estimate t̂(t) by letting

t̂(t) = t̂(t0) + ∆̂(t)[s(t)− s(t0)], (2)

where ∆̂(t) is an estimate of the oscillation period 1/f(t) in
the period [t0, t]. It is reasonable to initialize ∆̂(t) to 1/f̂ .
The time estimate t̂(t) can be considered as the value of
the logical clock at time t and represents the network-wide
global time. It can be observed that the estimate ∆̂(t), which
we will also refer to as the rate multiplier, represents the
progress rate (speed) of the logical clock.

t(0) t(1) t(2) t(k) t(k+1) t

s(t)

Fig. 1: The graphs of s(t) (continuous line) and of its
approximation

∫ t
−∞ f(σ)dσ (dashed line). Due to their dy-

namic frequencies, the tick events of clocks do not occur at
regular time intervals. Hence, s(t) is a step shaped function.

B. Network Model

In our setup, we represent a communication network by
a graph G = (V, E) where the vertex set V = {1, . . . , N}
represents sensor nodes. We assume that if (i, j) ∈ E in graph
G then node i can communicate to the node j. Specifically,
each node i ∈ {1, . . . , N} broadcasts t̂i(t) to its neighbours
at time instants Ttx,i(h), h = 0, 1, . . . , and can use any
information it receives from the neighbouring nodes to apply
a control at the time instants Tup,i(h), h = 0, 1, More
precisely, node i can modify both t̂i(t) and ∆̂i(t) whenever
it obtains information allowing it to improve its time and
oscillator frequency estimates. In this paper we consider
additive corrections of the form 1

t̂i(T
+
up,i(h)) = t̂i(Tup,i(h)) + u′i(h)

∆̂i(T
+
up,i(h)) = ∆̂i(Tup,i(h)) + u′′i (h) (3)

where u′i(h) and u′′i (h) denote the control inputs applied
to t̂i and ∆̂i, respectively, at time Tup,i(h). Moreover, for
t ∈
[
T+

up,i(h), Tup,i(h+ 1)
]

we assume that t̂i(t) is updated
according to (2), while ∆̂i is left unchanged, i.e.:

t̂i(t) = t̂i(T
+
up,i(h)) + ∆̂i(T

+
up,i(h)) (si(t)− si(Tup,i(h))) ,

∆̂i(t) = ∆̂i(T
+
up,i(h)) (4)

In Figure 2 we depict the behaviour of the logical clock t̂i
and of the rate multiplier ∆̂i.

The objective is to find a control strategy leading the
logical clocks t̂i(t), i ∈ {1, . . . , N} to obtain the same time
estimate, namely, such that there exist constants a ∈ R>0

and b ∈ R such that synchronization errors

ei(t) := t̂i(t)− (at+ b), i ∈ {1, . . . , N} , (5)

converge to zero or remain small.

1Given time t, with the symbol t+ we mean the time instant just after t.

Fig. 2: Behavior of the logical clock t̂i (left column) and the
rate multiplier ∆̂i (right column), respectively.

III. PISYNC ALGORITHM

In this section, we devise a distributed synchronization
algorithm which is based upon a Proportional-Integral (PI)
Controller. Our algorithm, named PISync, applies a propor-
tional feedback (P) and an integral feedback (I) on measured
relative offsets to compensate the differences between the
clock offsets and the clock speeds, respectively. For ease
of presentation, consider the pairwise synchronization be-
tween two nodes i and j, where i plays the role of the
reference clock. Without loss of generality, assume that
node i transmits, at a generic transmission time Ttx,i, the
information t̂i(Ttx,i) to node j. Due to transmission delays,
the information t̂i(Ttx,i) is received by node j at a delayed
time Ttx,i + γi,j where γi,j is a non-negative real number
representing the deliver delay between i and j. Based on
the information received, node j instantaneously applies the
following PISync update rule

u′j = βj
(
t̂i(Ttx,i)− t̂j (Ttx,i + γi,j)

)
u′′j = αj

(
t̂i(Ttx,i)− t̂j (Ttx,i + γi,j)

)
(6)

and corrects itslogical clock t̂j(Ttx,i + γi,j) and rate mul-
tiplier ∆̂j(Ttx,i + γi,j), where βj , αj are two control pa-
rameters to be designed. Observe that the update rule above
requires only the estimated synchronization error between
nodes i and j, and the two control parameters αj , βj to be
designed. Using PISync update rule, we can rewrite (3) as
follows since we have that Tup,j = Ttx,i + γi,j :

t̂j

(
(Ttx,i + γi,j)

+
)

= t̂j (Ttx,i + γi,j)

+ βj
(
t̂i(Ttx,i)− t̂j (Ttx,i + γi,j)

)
∆̂j

(
(Ttx,i + γi,j)

+
)

= ∆̂j (Ttx,i + γi,j)

+ αj
(
t̂i(Ttx,i)− t̂j (Ttx,i + γi,j)

)
(7)

Additionally in realistic scenarios, the information received
by node j is affected by a noise vi,j , which models the
unavoidable quantization effects and communication chan-
nels errors. Hence, in the above equations the term t̂i(Ttx,i)
should be replaced by t̂i(Ttx,i(h)) + vi,j(Ttx,i(h)).

A. Synchronization Conditions and Rate of Convergence

A preliminary attempt for the design of the parameters
αj and βj can be obtained under some explicit assumptions

that allows for an explicit mathematical analysis of the
convergence rate and the steady-state error of the PISync
algorithm. Assume that the oscillator frequencies fi, fj are
constant, i.e. fi(t) = f̄i, fj(t) = f̄j for all t ∈ R>0, node i
is perfectly synchronized with respect to the absolute time,
i.e. f̄i = f̂ and t̂i(0) = 0, and node i periodically transmits to
node j a message carrying its own logical clock with period
B. In addition assume that only node j updates its logical
clock by keeping βj(t) and αj(t) constant, i.e., βj(t) = β
and αj(t) = α. Then, we have the following result.

Proposition III.1 Under the assumption of no communica-
tion delay and no transmission error, i.e. γi,j = 0 and
vi,j = 0, and of periodic communication with period B,
synchronization is achieved if and only if

0 < β < 2, 0 < α <
2(2− β)

f̄jB
(8)

holds. Moreover, for β = 1, the convergence rate factor ρ
(such that |t̂i(t)− t̂j(t)| ∝ ρ

t
B) is given by

ρ =
∣∣1− αf̄jB∣∣ , (9)

and it is minimised for

α∗ =
1

f̄jB
(10)

Proof: Since node i is perfectly synchronized with
respect to the absolute time, Eqn.(5) becomes

ej(t)= t̂j(t)−t̂i(t)= t̂j(t)−
(
f i

f̂
t+ t̂i(0)

)
= t̂j(t)−t. (11)

Moreover, since γji = 0, we have Ttx,i(h) = hB, h ∈ N.
Let us denote t̂j(h) = t̂j(hB) and similarly for t̂i and ej ,
therefore the update in Eqn.(7) becomes

t̂j(h
+) = t̂j(h)− βjej(h) (12)

∆̂j(h
+) = ∆̂j(h)− αjej(h). (13)

By considering Eqn. 11 for t = (h + 1)B and by recalling
the definition of ej and that t̂i(h+1) = t̂i(h)+B, we obtain[
ej(h+ 1)

∆̂j(h+ 1)

]
=

[
1− β − αBf̄j Bf̄j

−α 1

]
︸ ︷︷ ︸

F

[
ej(h)

∆̂j(h)

]
−
[
B
0

]
(14)

where
[
ej(0)

∆̂j(0)

]
=

[
t̂j(0)

1
f̂

]
being f̄j , t̂j(0) arbitrary.

By inspecting these dynamics, it is immediate to see that,
if the gains α and β are chosen such that the matrix F is
strictly stable, i.e. its two eigenvalues have modulus strictly
smaller than unity, then the dynamical system must converge
asymptotically to a steady state, i.e. limh→∞ ej(h) = ej(∞)
and limh→∞ ∆̂j(h) = ∆̂j(∞) which must satisfy

∆̂j(∞)=∆̂j(∞)− αej(∞) =⇒ ej(∞) = 0, (α 6= 0)

ej(∞) =(1−β−αBf̄j)ej(∞)+Bf̄j∆̂j(∞)−B=⇒∆̂j(∞)= 1
f̄j

which shows that time synchronization is eventually
achieved, since ej(∞) = 0. The eigenvalues of the matrix

F which are given by the solution of the following second
order system

z2 − (2− β − αBf̄j)z + (1− β) = 0

can be calculated as

z1,2 =
2− β − αBf̄j ±

√
(β + αBf̄j)2 − 4αf̄jB

2
.

We then would like to find the set of values for the gains
α and β for which these roots are stable, i.e., |z1,2| < 1.
After some simple calculations, we obtain:

0 < β < 2, 0 < α <
2(2− β)

f̄jB
. (15)

It is also possible to find the optimal value for α for any fixed
and feasible value of β to maximize the rate of convergence,
which after some simple calculations is given by

α∗ = argminα|z1,2| =
2− β
f̄jB

(16)

When β = 1 one can easy see that z1 = 0, z2 = 1 − αf̂B.
This concludes the proof.

Remark III.2 Observe from (14) that the dynamics of ∆̂j is
a discrete time integrator driven by the error signal ej where
the parameter α is referred as the integrator feedback gain.
The dynamics of the synchronization error ej are affected
by the output of the integrator ∆̂j and includes also a
proportional feedback on itself via the proportional feedback
gain β. The role of the proportional gain is to compensate
for the different initial clock offset t̂j(0), while the role of
the integrator gain is to compensate for different clock drifts
f̄j − f̂ , which are both not directly measurable. In fact, if
the integrator is disabled and the proportional gain is chosen
to keep the dynamics stable, then the a steady state error is
present:

α=0=⇒

∆̂j(h) = 1
f̂
, ej(h+ 1)=(1− β)ej(h) +B

f̄j−f̂
f̂

ej(∞) =
B(f̄j−f̂)

βf̂
, (0 < β < 2)

Note that the steady state error is directly proportional to both
the difference of the relative clock speed and the transmission
period B. In fact, if all clocks have the same drift, i.e. f̄j =
f̂ ,∀j, then the proportional feedback alone would suffice to
drive the synchronization error to zero.

B. Steady State Error

After presenting the sufficient conditions to establish syn-
chronization and the convergence rate of PISync, we now
focus its steady-state error by considering a more realis-
tic scenario including transmission errors and time-varying
clock frequencies. Specifically we assume that
• quantization effects and communication channels’ er-

rors are modeled as zero mean white noise of variance
η2
t

1
f̂2

where ηt is an adimensional parameter which is
typically in the order of unity;

• for t ∈ [hB, (h+1)B], the frequency f̄k(t), k = i, j, is
given by f̄k+wk(h) where wj(h) is a zero mean-noise
uniformly distributed in [−∆fmax,∆fmax] with corre-
sponding variance η2

wf̂
2 where ηw is an adimensional

parameter which refers to the typical relative frequency
change over one synchronization period B.

Proposition III.3 Assume the transmission errors and the
frequencies f̄k(t), k = i, j, are modeled as above. Under
the assumption of no communication delay and of periodic
communication with period B, for β = 1, the root-mean-
square error (RMSE) σRMSE of node j is a monotonically
increasing function on α and is given by

σRMSE=

√√√√2αB2
(
η2
t+η

2
wf̂

2B2
)
(1+η2

w)

2Bf̂−αB2f̂2(1+η2
w)

+η2
t

1

f̂2
+2η2

wB
2(17)

Proof: Recall that Ttx,i(h) = hB, where B is a given
sampling time and h = 0, 1, 2, Since node i is the
reference node we get that ∆̂i(h) = 1/f̂ for all h. Hence

t̂i(h+ 1) = t̂i(h) +
1

f̂
(f̂ + wi(h))B

and

t̂j(h+ 1) = t̂j(h
+) + ∆̂j(h

+) (f̂ + wj(h))B

∆̂j(h+ 1) = ∆̂j(h
+)

where

t̂j(h
+) = t̂j(h)− β(ej(h)− vi,j(h)) (18)

∆̂j(h
+) = ∆̂j(h)− α(ej(h)− vi,j(h)) (19)

being vi,j(h) the transmission error. Recalling that ej(h) =
t̂j(h) − t̂i(h), and by defining zj(h) = ∆̂j(h)f̂ − 1, then
after some straightforward calculation we get:

ej(h+ 1) = vi,j(h) +B

(
1 + wj(h)

1

f̂

)
zj(h+ 1)

+
B

f̂
(wj(h)− wi(h))

where zj(h+ 1) = zj(h)− αf̂(ej(h)− vi,j(h)). By substi-
tuting ej(h) in this equation above, we get:

zj(h+1)=
(

1− αf̂B − αwj(h− 1)B
)
zj(h)

−αf̂
(
vi,j(h−1)+

B

f̂
(wj(h−1)−wi(h−1))−vi,j(h)

)
.

Let Pzj (h) = E
[
z2
j (h)

]
and Pej (h) = E

[
e2
j (h)

]
. It follows

Pzj (h+ 1) =
(

(1− αf̂B)2 + α2σ2
wB

2
)
Pzj (h)

+ α2
(

2σ2
v f̂

2 + 2σ2
wB

2
)

Hence

lim
h→∞

Pzj (h) =
2α
(
η2
t + η2

wf̂
2B2

)
2Bf̂ − αB2f̂2(1 + η2

w)

and, in turn,

P̄ej = lim
h→∞

Pej (h)

=
2αB2

(
η2
t + η2

wf̂
2B2

)(
1 + η2

w

)
2Bf̂ − αB2f̂2(1 + η2

w)
+η2

t

1

f̂2
+2η2

wB
2.

This concludes the proof.

Remark III.4 Notice, from expression in (17), that, due to
the presence of noises, even for α = 0 there is still some non-
zero steady state error. However, since the expression in (17)
is increasing on α, the smaller the value of α is, the smaller
the value of the error is, even though, as α approaches 0, the
algorithm becomes slower and slower.

C. Comparison with Least-squares Based Synchronization

Under the same hypothesis of the previous two sections,
we now provide a similar intuitive presentation of the least-
squares-based time synchronization. In this context, the
logical clocks of the two nodes can be written as:

t̂i(h) =
1

f̂
si(h)

t̂j(h) = u′j(h) + u′′j (h)sj(h)

where u′j(h) and u′′j (h) have to be designed to drive the
synchronization error ej(h) = ej(h) − ei(h) to zero. We
assume that u′j(h) = u′ and u′′j (h) = u′′ are kept constant
for the first H steps so that we can writeej(H − 1)

...
ej(0)


︸ ︷︷ ︸

e

=

1 sj(H − 1)
...

...
1 sj(0)


︸ ︷︷ ︸

A

[
u′

u′′

]
︸ ︷︷ ︸

u

− 1

f̂

 si(H − 1)
...

si(0)


︸ ︷︷ ︸

b

Under least-square-based synchronization the values for the
compensating parameters is given by

argminu‖e‖ = argminu‖Au− b‖ =⇒ u = (ATA)−1ATb

Note that A and b are known to node j as long as node
i transmits either t̂i(h) or si(t) since f̂ is known. In the
specific case when H = 2, the solution is given by:

u′=
1

f̂

si(0)sj(1)− si(1)sj(0)

sj(1)− sj(0)
, u′′=

1

f̂

si(1)− si(0)

sj(1)− sj(0)
.

If no measurements errors are considered, then the previ-
ous solutions provide exact synchronization, i.e., t̂j(h) =
t̂i(h),∀h ≥ 2. In practice, this is not the case due, for
example, to transmission delay or quantization, and therefore
the previous procedure has to be repeated periodically.

At the light of the derivations above about the control-
based and least-squares-based time synchronization a number
of observations are in order: (i) Under the ideal scenarios
above, the rate of convergence for the control-based syn-
chronization is asymptotic, while using least-squares can
be achieved in finite time. (ii) If measurements errors are

present, due for example to transmission delay or quantiza-
tion, then we have to substitute t̂i(h)← t̂i(h) +wi,j(h) into
Eqn. (14) and si(h) ← si(h) + vi,j(h) into Eqn. (III-C),
where vi,j(h)’s represent the measurement noise at iteration
h. As the consequence the time synchronization error dy-
namics for the control-based strategy becomes:[

ej(h+ 1)

∆̂j(h+ 1)

]
=

[
1− βj Bf̄j
−αj 1

] [
ej(h)

∆̂j(h)

]
−
[
B
0

]
+ vi,j(h)

[
βj
αj

]
(20)

while the equation u′′ for the first iteration in the least-
squares approach becomes

u′′ =
1

f̂

si(1)− si(0) + wi,j(1)− wi,j(0)

sj(1)− sj(0) + wi,j(1)− wi,j(0)

These two equations clearly show that in control-based
approach the disturbances enter the synchronization error
dynamics linearly, while in the least-square dynamics non-
linearly. Also note that in the control-based approach the
measurement errors are amplified by the control gains αj , βj ,
which therefore should be kept small to reduce the steady
state error. However, this comes at the price of slower
convergence rate since the modulus of the largest eigenvalue
of F approaches unity for αj → 0, βj → 0. (iii) Memory
and CPU requirements for the control-based strategy are
minimal since only two additions and two multiplication
are needed and no data storage is necessary. Differently, in
the least-squares-based approach it is necessary to store 2H
measurements and perform 3H multiplications, 3H additions
and a 2× 2 matrix inversion and multiplication.

IV. MULTI-HOP TIME SYNCHRONIZATION WITH PISYNC

Employing PISync algorithm, network-wide time synchro-
nization can efficiently be established by disseminating the
reference time through the network via flooding. To this end,
a special reference node which is predefined or dynamically
elected is required to broadcast its stable time information
into the network periodically. The nodes that are in the com-
munication range of the reference node can directly receive
the time information of the reference node and synchronize
their logical clocks according to PISync algorithm. In order
to inform their neighboring nodes about the reference time,
these nodes are also required to broadcast the value of their
logical clocks periodically so that their neighbors receive the
estimated reference time and employ the PISync algorithm
to synchronize their logical clocks. As discussed previously,
this multi-hop synchronization approach is lightweight in
terms of memory and computation requirements as compared
to least-squares based synchronization. Moreover, as a direct
application of Proposition III.3, one can show that the root
mean synchronization error of this approach grows with the
square root of the distance to the reference node.

In the previous section, we considered an idealized pair-
wise synchronization scenario and obtained the constant
value α∗ of the integral gain α that will give rise to the
maximum rate of convergence for the fixed proportional gain

β = 1, as shown in Eqn. (8). However, one cannot get
the minimum steady-state error and fastest synchronization
with these constant gains. In fact, shown in Eqn. (17), for
β = 1 the optimal value of α to minimize the steady state
error is α = 0 . Hence, in this section we introduce a
strategy to adjust control gain α adaptively to improve both
convergence rate and stability, especially for multi-hop time
synchronization.

We propose to use the constant value of β = 1 for
the proportional gain since it is convenient to compensate
the offset between the reference clock and the receiver
clock in one step. Regarding the integral gain, since it
compensates frequency differences of the clocks, its absence
would give rise to the typical saw-tooth behaviour of the
time synchronization error. However, if the integral gain is
too large, it might drive the algorithm to instability. Besides,
if the integrator is active when the measured synchronization
is not due to the different clock speeds, the so-called windup
problem occurs. Considering these issues, we propose the
following procedure for the on-line adaptation of the inte-
grator gain α. First we define the quantity emax as follows:

emax = max
i,j

|f̄i − f̄j |
f̂

B =
2∆fmax

f̂
B (21)

which represents the maximum synchronization error that
can be observed due to the frequency difference between
two arbitrary nodes within a time window of size B. If any
node observes that its synchronization error with respect to
the reference time is greater than emax, then it disables the
integrator to avoid the integrator windup, since it is likely
that the error is due to the large initial clock offset rather
than the different clock frequency. After the proportional
feedback compensates the initial clock offset differences, the
observed synchronization error will be smaller than emax and
thus the integrator feedback will be enabled by setting the
integrator gain to α∗ that gives the fastest convergence rate.
Since this value of the integrator gain is not sufficient to
achieve the smallest steady-state error, we gradually reduce
it at steady-state to decrease the synchronization error. In
case of a sudden clock frequency change, the integrator gain
is increased to quickly compensate frequency differences
and after the algorithm has converged to steady-state the
integrator gain is decreased again to reduce steady-state error.
Following this simple intuition, we formalize our integrator
gain adaptation of any node j where node i is the reference
node with the following algorithm:

Algorithm 1 Adaptation algorithm for the integrator gain.
1: if |eij(h)| > emax
2: αj(h) = 0
3: else if αj(h− 1) = 0
4: αj(h) = α∗

5: else if δeji(h)δeji(h− 1) > 0
6: αj(h) = max{λ+αj(h−1), α∗}
7: else
8: αj(h) =

αj(h−1)
λ−

Fig. 3: Flooding-based (left) and fully-distributed (right)
time synchronization approaches with PISync from node j’s
view in a network of 4 nodes.

Here, δeji(h) = eji(h)−eji(h−1) initialized to δeji(0) =
δeji(−1) = 0. The intuition behind the procedure is that if
the variation of the error of the previous round δeji(h − 1)
have the same sign then the integrator gain can be in-
creased to accelerate the decrease of the error and hence
the convergence rate. Conversely, if the signs of the error
variation are opposite, then the error is oscillating and in
order to decrease the steady-state error it is necessary to
decrease the integral gain. The values λ+ = 2 and λ− = 3
are obtained empirically based on experimental performance
analysis provided in [15].

A. Fully Distributed Network-wide Synchronization

PISync algorithm can also be applied to scenarios where
nodes interact only with their direct neighbours in a peer-to-
peer fashion and there is no any special node that floods
the reference time information. In such fully-distributed
executions, flooding-based synchronization approach can be
slightly modified to allow nodes to synchronize to their direct
neighbours. For this purpose, nodes are required to broadcast
their clock values periodically to inform their neighbouring
nodes about their current time information. Upon a new
packet reception, each neighboring node calculates its syn-
chronization error with respect to the received clock value,
adds this error to its sum variable and increments the number
of received clock values by one. It should be noted that this
is a completely blind operation since there is no need to
know the sender node or to store its clock value. At specific
time instants, e.g. before broadcasting its clock value, each
node calculates the average synchronization error inside its
neighborhood by dividing its sum variable by the number
of received clock values, and applies the PISync algorithm
considering the average error to update its clock.

Figure 3 presents a comparison of flooding-based and
fully-distributed time synchronization with PISync from the
perspective of node j on a network of 4 nodes. Due to the
frequency differences of the clocks, a constant disturbance

Fig. 4: Maximum error to the reference node on the line
topology of 20 sensor nodes for FTSP (top) and flooding-
based PISync (bottom), respectively.

d(t) enters the system. In flooding-based approach, since
node i is the reference node that floods its time information
t̂i(t), node j only considers its synchronization error e(t) =
t̂j(t) − t̂i(t) with respect to the reference time to apply
the input u(t) = −kP e(t) + kI

∫
e(t)dt. On the other

hand, in fully-distributed scenario, node j considers all clock
values of its neighboring nodes to calculate the average
synchronization error, i.e. e(t) = 1/N

∑
i,j t̂j(t)− t̂i(t).

V. EVALUATION

In this section, we present an experimental evaluation of
PISync on a real testbed of 20 MICAz sensor nodes. For
performance comparison, we choosed FTSP which is the de
facto flooding based time synchronization protocol in WSNs
and it employs least-squares regression. We performed the
experiments on the line topology in order to observe the
scalability of the flooding-based scenarios. In addition, we
performed experiments on the 5x4 grid topology to obtain
an impression about the performance of fully-distributed
approaches. We set the beacon period B to 30 seconds and
fixed the capacity of the least-squares regression table of
FTSP to 8 elements. We assigned unique identifiers from
1 to 20 for each node and fixed node 1 as the reference
node that floods the value of its clock through the network.
Since the nominal frequency of the MICAz sensor nodes is
f̂ = 1 MHz and their reported the nominal drift is ±100
ppm, we substituted these values into Eqn.(21) and Eqn.(9)
and used the following parameter values emax = 0.006 and
α∗ = 1/(f̂B) = 3, 33 · 10−8 in our experiments.

Fig. 5: Maximum error to the node with identifier 1 on
the 5x4 grid topology for FTSP (top) and fully-distributed
PISync (bottom), respectively.

During the experiments, we collected instantaneous logical
clock values from the nodes and calculated the maximum
instantaneous synchronization error to the reference node.
Figure 4 presents the summary of these calculations on
the line topology for flooding-based PISync and FTSP,
respectively. It can be observed that the synchronization error
of FTSP is exponential with the distance to the reference
node 1. Even in small network, we observed more or less
0.5 milliseconds synchronization error to the reference node.
On the other hand, although PISync and FTSP have the
same communication pattern, PISync outperformed FTSP
drastically since we observed a synchronization error of at
most 20 microseconds, which is a significant improvement
as compared to FTSP. Moreover, the synchronization error
grows linearly unlike the exponential growth of FTSP, thus
confirming our theoretical results.

In order to observe the fully-distributed synchronization
performance of PISync, we also performed experiments
on the 5x4 grid topology. Figure 5 summarizes the max-
imum synchronization error to the node with identifier 1
for FTSP and fully-distributed PISync, respectively. Even
on this topology with a diameter of 9, the exponential
increase of the synchronization error of FTSP with the
distance can easily be observed. Moreover, although nodes
15 and 20 are neighbors on the grid topology, we observed
more or less 10 microsecond maximum error between these
nodes. Differently, since sensor nodes synchronize to their
direct neighbors PISync, neighboring nodes are more tightly
synchronized as compared to far-away nodes. Moreover,

similarly to the flooding-based scenario, the fully-distributed
PISync is superior than FTSP in terms of synchronization
error.

We also have some observations related to the computation
and memory requirements of PISync. First, the implemen-
tation of PISync is quite simple that gives rise to the
significantly reduced code size for time synchronization. The
application code size in our experiments was 18000 bytes for
FTSP while it was 15432 for PISync. Besides, since FTSP
requires a least-squares regression table to store the time
information of the reference node, its RAM requirements is
considerably more than that of PISync, which we measured
as 52 bytes for FTSP and 16 bytes for PISync, respectively,
Finally, at each reference time reception, FTSP performs
least-squares regression on the stored information to calcu-
late the estimated regression line. We measured that these
operations took approximately 5,5 milliseconds on MICAz
platform. On the other hand, since PISync requires only
a few arithmetic operations to perform synchronization, it
decreases the computation overhead by 50 times as compared
to FTSP, which we measured as only 145 microseconds. Our
overall impression about the experiments is PISync is supe-
rior to FTSP in terms of synchronization error, computation
requirements and memory overhead.

VI. CONCLUSIONS

We proposed a new control theoretic distributed time
synchronization algorithm, named PISync, which is based
on a Proportional-Integral (PI) controller. We provided a
theoretical analysis in terms of the stability, convergence rate
and steady-state error of the proposed algorithm. We high-
lighted the benefits of this approach as compared to least-
squares based time synchronization and presented a practical
flooding-based and fully-distributed protocol implementa-
tions of it. In the light of the real-world experiments, we
observed that PISync has considerably better synchronization
performance and scalability over least-squares based time
synchronization with the additional advantage of minimal
resource requirements.

REFERENCES

[1] I. F. Akyildiz and M. C. Vuran, Wireless Sensor Networks. John
Wiley & Sons, 2010.

[2] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems.
New York, NY, USA: ACM, 2004, pp. 39–49.

[3] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler,
“Elapsed time on arrival: A simple and versatile primitive for canonical
time synchronisation services,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 1, no. 4, pp. 239–251, 2006.

[4] C. Lenzen, P. Sommer, and R. Wattenhofer, “Optimal Clock Synchro-
nization in Networks,” in 7th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), Berkeley, California, USA, Novem-
ber 2009.

[5] T. Schmid, Z. Charbiwala, Z. Anagnostopoulou, M. B. Srivastava, and
P. Dutta, “A case against routing-integrated time synchronization,” in
Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys ’10. New York, NY, USA: ACM,
2010, pp. 267–280. [Online]. Available: http://doi.acm.org/10.1145/
1869983.1870010

[6] K. S. Yildirim and A. Kantarci, “Time synchronization based on slow
flooding in wireless sensor networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 99, no. PrePrints, p. 1, 2013.

[7] K. Yildirim and A. Kantarci, “External gradient time synchronization
in wireless sensor networks,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 3, pp. 633–641, March 2014.

[8] K. S. Yildirim and A. Kantarci, “Drift estimation using pairwise
slope with minimum variance in wireless sensor networks,”
Ad Hoc Networks, no. 0, pp. –, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870512001618

[9] M. Leng and Y.-C. Wu, “Low-complexity maximum-likelihood es-
timator for clock synchronization of wireless sensor nodes under
exponential delays,” Signal Processing, IEEE Transactions on, vol. 59,
no. 10, pp. 4860–4870, 2011.

[10] X. Cao, F. Yang, X. Gan, J. Liu, L. Qian, X. Tian, and X. Wang,
“Joint estimation of clock skew and offset in pairwise broadcast
synchronization mechanism,” Communications, IEEE Transactions on,
vol. 61, no. 6, pp. 2508–2521, 2013.

[11] M. Leng and Y.-C. Wu, “Distributed clock synchronization for wireless
sensor networks using belief propagation,” Signal Processing, IEEE
Transactions on, vol. 59, no. 11, pp. 5404–5414, 2011.

[12] J.-M. Berthaud, “Time synchronization over networks using convex
closures,” IEEE/ACM Trans. Netw., vol. 8, no. 2, pp. 265–277, Apr.
2000. [Online]. Available: http://dx.doi.org/10.1109/90.842147

[13] J. Chen, Q. Yu, Y. Zhang, H.-H. Chen, and Y. Sun, “Feedback-based
clock synchronization in wireless sensor networks: A control theoretic
approach,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 6,
pp. 2963–2973, 2010.

[14] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchro-
nization for networks of noisy double integrators,” Automatic Control,
IEEE Transactions on, vol. 56, no. 5, pp. 1146–1152, 2011.

[15] K. S. Yildirim and Ö. Gürcan, “Efficient time synchronization in a
wireless sensor network by adaptive value tracking,” Wireless Com-
munications, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

